Один из наиболее распространенных химических элементов, входящий в подавляющее большинство химических веществ - это кислород. Оксиды, кислоты, основания, спирты, фенолы и другие кислородсодержащие соединения изучаются в курсе неорганической и органической химии. В нашей статье мы изучим свойства, а также приведем примеры их применения в промышленности, сельском хозяйстве и медицине.

Оксиды

Наиболее простыми по строению являются бинарные соединения металлов и неметаллов с кислородом. Классификация оксидов включает следующие группы: кислотные, основные, амфотерные и безразличные. Главный критерий деления всех этих веществ заключается в том, какой элемент соединяется с кислородом. Если это металл, то они относятся к основным. Например: CuO, MgO, Na 2 O - окиси меди, магния, натрия. Их основное химическое свойство - это реакция с кислотами. Так, оксид меди реагирует с хлоридной кислотой:

CuO + 2HCl -> CuCl2 + H2O + 63, 3 кДж.

Присутствие атомов неметаллических элементов в молекулах бинарных соединений свидетельствует об их принадлежности к кислотным водорода H 2 O, углекислый газ CO 2 , пятиокись фосфора P 2 O 5 . Способность таких веществ реагировать со щелочами - главная их химическая характеристика.

В результате реакции могут образовываться видов: кислые или средние. Это будет зависеть от того, сколько моль щелочи вступает в реакцию:

  • CO2 + KOH => KHCO3;
  • CO2+ 2KOH => K2CO3 + H2O.

Еще одну группу кислородсодержащих соединений, в которые входят такие химические элементы, как цинк или алюминий, относят к амфотерным оксидам. В их свойствах прослеживается тенденция к химическому взаимодействию как с кислотами, так и со щелочами. Продуктами взаимодействия кислотных оксидов с водой являются кислоты. Например, в реакции серного ангидрида и воды образуется Кислоты - это один из наиболее важных классов кислородсодержащих соединений.

Кислоты и их свойства

Соединения, состоящие из водородных атомов, связанных со сложными ионами кислотных остатков - это кислоты. Условно их можно разделить на неорганические, например, карбонатную кислоту, сульфатную, нитратную, и органические соединения. К последним принадлежат уксусная кислота, муравьиная, олеиновая кислоты. Обе группы веществ имеют схожие свойства. Так, они вступают в реакцию нейтрализации с основаниями, реагируют с солями и основными оксидами. Практически все кислородсодержащие кислоты в водных растворах диссоциируют на ионы, являясь проводниками второго рода. Определить кислый характер их среды, обусловленной избыточным присутствием водородных ионов, можно с помощью индикаторов. Например, фиолетовый лакмус при добавлении его в раствор кислоты приобретает красную окраску. Типичным представителем органических соединений является уксусная кислота, содержащая карбоксильную группу. В нее входит атом водорода, который и обуславливает кислотные Это бесцветная жидкость со специфическим резким запахом, кристаллизующаяся при температуре ниже 17 °С. CH 3 COOH, как и другие кислородсодержащие кислоты, прекрасно растворяется в воде в любых пропорциях. Ее 3 - 5 % раствор известен в быту под названием уксуса, который используют в кулинарии как приправу. Вещество нашло свое применение также в производстве ацетатного шелка, красителей, пластических масс и некоторых лекарственных средств.

Органические соединения, содержащие кислород

В химии можно выделить большую группу веществ, содержащих, кроме углерода и водорода, еще и кислородные частицы. Это карбоновые кислоты, эфиры, альдегиды, спирты и фенолы. Все их химические свойства определяются присутствием в молекулах особых комплексов - функциональных групп. Например, спирта, содержащего только предельные связи между атомами - ROH, где R - углеводородный радикал. Эти соединения принято рассматривать как производные алканов, у которых один водородный атом замещен гидроксогруппой.

Физические и химические свойства спиртов

Агрегатное состояние спиртов - это жидкости или твердые соединения. Среди спиртов нет газообразных веществ, что можно объяснить образованием ассоциатов - групп, состоящих из нескольких молекул, соединенных слабыми водородными связями. Этим фактом определяется и хорошая растворимость низших спиртов в воде. Однако в водных растворах кислородсодержащие органические вещества - спирты, не диссоциируют на ионы, не изменяют цвет индикаторов, то есть имеют нейтральную реакцию. Атом водорода функциональной группы слабо связан с другими частицами, поэтому в химических взаимодействиях способен покидать пределы молекулы. По месту же свободной валентности происходит его замещение на другие атомы, например, в реакциях с активными металлами или со щелочами - на атомы металла. В присутствии катализаторов, таких, как платиновая сетка или медь, спирты окисляются энергичными окислителями - бихроматом или перманганатом калия, до альдегидов.

Реакция этерификации

Одно из важнейших химических свойств кислородсодержащих органических веществ: спиртов и кислот - это реакция, приводящая к получению сложных эфиров. Она имеет большое практическое значение и используется в промышленности для добывания эстеров, применяемых в качестве растворителей, в пищевой промышленности (в виде фруктовых эссенций). В медицине некоторые из эфиров применяют в качестве спазмолитиков, например, этилнитрит расширяет периферические кровеносные сосуды, а изоамилнитрит является протектором спазмов коронарных артерий. Уравнение реакции этерификации имеет следующий вид:

CH3COOH+C2H5OH<--(H2SO4)-->CH3COOC2H5+H2O

В ней CH 3 COOH - это уксусная кислота, а C 2 H 5 OH - химическая формула спирта этанола.

Альдегиды

Если соединение содержит функциональную группу -COH, то оно относится к альдегидам. Их представляют как продукты дальнейшего окисления спиртов, например, такими окислителями, как оксид меди.

Присутствие карбонильного комплекса в молекулах муравьиного или уксусного альдегида обуславливают их способность полимеризоваться и присоединять атомы других химических элементов. Качественными реакциями, с помощью которых можно доказать наличие карбонильной группы и принадлежность вещества к альдегидам, являются реакция серебряного зеркала и взаимодействие с гидроокисью меди при нагревании:

Наибольшее применение получил ацетальдегид, используемый в промышленности для получения уксусной кислоты - много тоннажного продукта органического синтеза.

Свойства кислородсодержащих органических соединений - карбоновых кислот

Наличие карбоксильной группы - одной или нескольких - это отличительная черта карбоновых кислот. Благодаря строению функциональной группы, в растворах кислот могут образовываться димеры. Они связаны между собой водородными связями. Соединения диссоциируют на катионы водорода и анионы кислотного остатка и являются слабыми электролитами. Исключением служит первый представитель ряда предельных одноосновных кислот - муравьиная, или метановая, являющаяся проводником второго рода средней силы. Присутствие в молекулах только простых сигма- связей говорит о предельности, если же вещества имеют в своем составе двойные пи-связи - это непредельные вещества. К первой группе относятся такие кислоты, как метановая, уксусная, масляная. Вторая представлена соединениями, входящими в состав жидких жиров - масел, например, олеиновой кислотой. Химические свойства кислородсодержащих соединений: органических и неорганических кислот во многом похожи. Так, они могут взаимодействовать с активными металлами, их оксидами, со щелочами, а также со спиртами. Например, уксусная кислота реагирует с натрием, оксидом и с образованием соли - ацетата натрия:

NaOH + CH3COOH→NaCH3COO + H2O

Особое место занимают соединения высших карбоновых кислородсодержащих кислот: стеариновой и пальмитиновой, с трехатомным предельным спиртом - глицерином. Они относятся к сложным эфирам и называются жирами. Эти же кислоты входят в состав солей натрия и калия в качестве кислотного остатка, образуя мыла.

Важные органические соединения, широко распространенные в живой природе и играющие ведущую роль в качестве наиболее энергоемкого вещества - это жиры. Они представляют собой не индивидуальное соединение, а смесь разнородных глицеридов. Это соединения предельного многоатомного спирта - глицерина, который, как и метанол и фенол, содержит гидроксильные функциональные группы. Жиры можно подвергнуть гидролизу - нагреванию с водой в присутствии катализаторов: щелочей, кислот, оксидов цинка, магния. Продуктами реакции будут глицерин и различные карбоновые кислоты, в дальнейшем используемые для производства мыла. Чтобы в этом процессе не использовать дорогостоящие природные необходимые карбоновые кислоты получают, окисляя парафин.

Фенолы

Заканчивая рассматривать классы кислородсодержащих соединений, остановимся на фенолах. Они представлены радикалом фенилом -C 6 H 5 , соединенным с одной или несколькими функциональными гидроксильными группами. Простейший представитель этого класса - карболовая кислота, или фенол. Как очень слабая кислота, он может взаимодействовать со щелочами и активными металлами - натрием, калием. Вещество с ярко выраженными бактерицидными свойствами - фенол применяется в медицине, в также при производстве красителей и фенолформальдегидных смол.

В нашей статье мы изучили основные классы кислородсодержащих соединений, а также рассмотрели их химические свойства.

Преподаватель:

Учебное заведение: профессиональный лицей метрополитена г. Санкт - Петербурга

Учебная дисциплина: химия

Тема: «Кислородсодержащие и азотсодержащие органические соединения»

Целевая аудитория: 1курс

Тип урока: обобщение материала, 1 акад. час.

Цели урока:

Знание: знать формулы и свойства кислородосодержащих и азотосодержащих органических веществ

Понимание: понимать зависимость свойств веществ от строения молекулы, от функциональной группы

Применение: использовать сведения о свойствах веществ для составления уравнений химических реакций.

Анализ: анализировать взаимное влияние групп атомов в молекулах органических веществ.

Синтез: обобщать сведения о свойствах органических веществ в виде цепочки превращений

Оценка: проводить самооценку по предложенным рубрикам.

Оборудование: интерактивная доска, мультимедийная презентация.

План урока:

1. Орг. момент

2. Повторение ранее изученного.

3. Выступления студентов.

4. Самоопределение студентов по уровням самооценки.

5. Самостоятельная работа учащихся.

6. Подведение итогов по критериально - ориентированной системе.

7. Домашнее задание.

Ход урока

1. Организационный момент.

Построение группы, рапорт старосты группы о количестве присутствующих учащихся.

2. Повторение ранее изученного

Сведения о функциональных группах, классах кислородосодержащих и азотосодержащих веществ, о простейших представителях этих классов с применением интерактивной доски и мультимедийной презентации.

Какая группа атомов, обязательно присутствующая в молекулах веществ данного класса, определяет химическую функцию вещества, т. е. его химические свойства?

Ответ: функциональная группа атомов

Дайте название функциональной группе - ОН

Ответ: гидроксильная группа атомов.

Какой класс веществ определяет гидроксильная группа атомов?

Ответ: Спирты, если 1 группа – ОН, одноатомные спирта, если более одной группы - ОН, многоатомные спирты.

Дайте название функциональной группе - СОН. Какой класс веществ она определяет?

Ответ: альдегидная группа, определяет класс альдегидов.

Дайте название функций группе – СОН. Какой класс она определяет?

Ответ: карбоксильная группа, определяет класс карбоновых кислот.

Дайте название функций группе - NH2. Какой класс она определяет?

Ответ: аминогруппа определяет класс аминов или класс аминокислот.

Слушаем сообщения учащихся с представлением мультимедийных презентаций о простейших представителях различных классов кислородосодержащих и азотосодержащих веществ.

3.Выступления студентов.

Сообщение 1 .

Этанол С2Н5ОН, класс одноатомные спирты, функциональная группа – гидроксильная группа атомов – ОН. Качественная реакция – взаимодействие с оксидом меди (II) с образованием альдегида. Химические свойства (выделяем 2 реакции) – горение и взаимодействие с металлами (Na).

Сообщение 2 .

Пропантриол (глицерин) С3Н7(ОН)3. Класс – многоатомные спирты, функциональные группы – несколько гидроксильных групп – ОН. Качественная реакция – взаимодействие с гидроксидом меди (II). Химические свойства – взаимодействие с натрием и с галогеноводородами.

Лабораторный опыт:

В пробирку наливаем около 1мл раствора сумората меди (II) и добавляем немного раствора гидроксида натрия до образования голубого осадка гидроксида меди (II). К полученному осадку добавляем по каплям раствор глицерина. Взболтаем смесь. Отмечаем превращение голубого осадка в раствор синего цвета.

(глицерин + Cu(OH)2 ----- синий раствор)

Сообщение 3.

Фенол C6H5OH – простейший представитель класса фенолов.

Функциональная группа – гидроксильная группа –OH. Качественная реакция – образование фиолетового раствора при взаимодействии с хлоридом железа (III) или образование белого осадка при взаимодействии с бромом. Химические свойства: фенол – слабая кислота, взаимодействует в металлами (Na) со щелочами (NaOH) и с бромом.

Сообщение 4.

Этаноль или уксусный альдегид CH3-COH Функциональная группа – COH альдегидная группа. Класс – альдегиды. Качественная реакция – реакция «серебряного зеркала». Химические свойства: реакция восстановления и реакция окисления.

Лабораторный опыт: демонстрационный опыт.

В пробирку, содержащую 1мл альдегида (водный раствор) прибавляем немного капель аммиачного раствора оксида серебра. Нагреваем пробирку. Наблюдаем выделение серебра на стенках пробирки, поверхность стекла становится зеркальной.

Сообщение 5.

Этановая кислота CH3-COOH (уксусная кислота). Класс – карбоновые кислоты. Функциональная группа – COOH карбоксильная группа. Качественная реакция – индикатор лакмус приобретает красный цвет.

Химические свойства: как любая кислота взаимодействует с металлами (Na), основными оксидами (Na2O), щелочами (NaOH).

Лабораторный опыт:

В сухую чистую пробирку с универсальным индикатором прилить немного уксусной кислоты. Индикатор краснеет.

Сообщение 6.

Глюкоза C6H12O6. Класс – углеводы. Функциональные группы: 5-OH и 1-COH, т. е. альдегидроспирт. Качественные реакции: взаимодействие с гидроксидом меди с образованием синего раствора. Реакция «серебряного зеркала» с выделением серебра на стенках пробирки. Химические свойства: восстановление в шестиатомный спирт, окисление в глюконовую кислоту, реакция брожения .

Сообщение 7.

Анилин C6H5-NH2.

Функциональная группа – NH2 аминогруппа. Класс – амины. Качественная реакция: взаимодействие с бромной водой с образованием белого осадка. Химические свойства: взаимодействие с соляной кислотой и с бромом.

Сообщение 8.

Аминоэтановая кислота NH2-CH2-COOH или аминоуксусная кислота.

Класс – аминокислоты. Функциональные группы: - NH2 аминогруппа и –COOH карбоксильная группа. Химические свойства: АК – амфотерные соединения; - NH2 сообщает основные свойства, - COOH – кислотные свойства. Поэтому аминокислоты способны соединяться друг с другом, образуя белковые молекулы, а белок – основа жизни на нашей планете.

4. Самоопределение студентов по уровням самооценки.

Интерактивная доска: учащиеся знакомятся с картой самооценки развития на уроке и отмечают свой уровень.

1. Я могу определить функциональную группу и простейшего представителя класса органических веществ с помощью преподавателя и конспекта (6-7баллов).

2. Я могу определить функциональную группу, простейшего представителя класса органических веществ без помощи преподавателя и без помощи конспекта (8-10баллов).

3. Я могу определить качественную реакцию и химические свойства вещества с помощью преподавателя и конспекта (11-14баллов).

4. Я могу определить качественную реакцию и химические свойства вещества без помощи преподавателя и без конспекта (15-18баллов).

Класс

Функциональные группы

Простейший представитель

Качественные реакции

Химические свойства

Одноатомные

спирты

Многоатомные спирты

Фенолы

Альдегиды

Карбоновые кислоты

Углеводы

Амины

Аминокислоты

Учащиеся знакомятся с критериально - ориентированной системой оценивания.

Критерии:

18 – 15 баллов – «отлично»

баллов – «хорошо»

10 – 6 баллов – «удовлетворительно»

5 и менее – «неудовлетворительно»

5. Самостоятельная работа учащихся.

6. Подведение итогов по критериально - ориентированной системе (объявление количества баллов учащимся).

7. Домашнее задание: заполнение таблицы.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Номенклатура производных бензола, их разновидности и методики получения, принципы и направления практического использования. Строение бензола и его ароматичность. Правило Хюккеля и особенности его применения. Небензоидные ароматические соединения.

    реферат , добавлен 05.08.2013

    Ароматические углеводороды: общая характеристика. Номенклатура и изомерия, физические и химические свойства ароматических углеводородов. Механизм реакций электрофильного и нуклеофильного замещения в ароматическом ряду. Применение аренов, их токсичность.

    реферат , добавлен 11.12.2011

    Алканы - предельные углеводороды, содержащие только простые связи углерода. Получение алканов: промышленный метод, нитрование и окисление. Углеводороды, содержащие двойную связь углерода - алкены или этиленовые углеводороды. Диеновые углеводороды.

    лекция , добавлен 05.02.2009

    Непредельные соединения, с двумя двойными связями в молекуле - диеновые углеводороды. Связь между строением диеновых углеводородов и их свойствами. Способы получения девинила, изопрена, синтетического каучука. Органические галогениды и их классификация.

    лекция , добавлен 19.02.2009

    Строение, номенклатура алкенов. Ненасыщенные углеводороды, молекулы которых содержат одну двойную С-С-связь. Гибридизация орбиталей. Изображение пространственного строения атомов. Пространственная изомерия углеродного скелета. Физические свойства алкенов.

    презентация , добавлен 06.08.2015

    Развитие представлений об органическом происхождении нефти. Парафиновые, нафтеновые и ароматические углеводороды. Давление насыщения нефти газом. Температура кристаллизации, помутнения, застывания. Различие свойств нефти в пределах нефтеносной залежи.

    учебное пособие , добавлен 05.02.2014

    Понятие алканов (насыщенные углеводороды, парафины, алифатические соединения), их систематическая и рациональная номенклатура. Химические свойства алканов, реакции радикального замещения и окисления. Получение и восстановление непредельных углеводородов.

    Известно, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория Л. М. Бутлерова. Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цени (циклы) в молекулах.
    Помимо атомов углерода и водорода молекулы органических веществ могут содержать атомы и других химических элементов. Вещества, в молекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероциклическим соединениям.
    Гетероатомы (кислород, азот и др.) могут входить в состав молекул и ациклических соединений, образуя в них функциональные группы, например, гидроксильную - ОН, карбонильную, карбоксильную, аминогруппу -NН2.
    Функциональная группа - группа атомов, которая определяет наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.

    Углеводороды - это соединения, состоящие только из атомов водорода и углерода.

    В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

    Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атомами углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

    Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические.

    Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой р-электронов, образующих общую π-систему (единое π-электронное облако). Ароматичность характерна и для многих гетероциклических соединений.

    Все остальные карбоциклические соединения относятся к алициклическому ряду.

    Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в отличие от предельных (насыщенных), содержащих только одинарные связи.

    Предельные алифатические углеводороды называют алканами , они имеют общую формулу С n Н 2 n +2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины.

    Содержащие одну двойную связь , получили название алкены . Они имеют общую формулу С n Н 2 n .

    Непредельные алифатические углеводороды с двумя двойными связями называют алкадиенами

    Непредельные алифатические углеводороды с одной тройной связью называют алкинами . Их общая формула С n Н 2 n — 2 .

    Предельные алициклические углеводороды - циклоалканы , их общая формула С n Н 2 n .

    Особая группа углеводородов, ароматических , или аренов (с замкнутой общей π-электронной системой), известна из примера углеводородов с общей формулой С n Н 2 n -6.

    Таким образом, если в их молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов : галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

    Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные.

    Общая формула моногалогенопроизводных предельных углеводородов:

    а состав выражается формулой

    C n H 2 n +1 Г,

    где R - остаток от предельного углеводорода (алкана), углеводородный радикал (это обозначение используется и далее при рассмотрении других классов органических веществ), Г - атом галогена (F, Сl, Вг, I).

    Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

    Спирты называют одноатомными , если они имеют одну гидроксильную группу, и предельными, если они являются производными алканов.

    Общая формула предельных одноатомных спиртов:

    а их состав выражается общей формулой:
    С n Н 2 n +1 ОН или С n Н 2 n +2 О

    Известны примеры многоатомных спиртов, т. е. имеющих несколько гндроксильных групп.

    Фенолы - производные ароматических углеводородов (ряда бензола), в которых один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.

    Простейший представитель с формулой С 6 Н 5 ОН называется фенолом.

    Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).

    В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.

    В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.

    Состав предельных альдегидов и кетонов выражается формулой С n Н 2л О.

    Карбоновые кислоты - производные углеводородов, содержащие карбоксильные группы (-СООН).

    Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных одноосновных кислот (R-СООН). Их состав выражается формулой С n Н 2 n O 2 .

    Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R-О-R или R 1 -O-R 2 .

    Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2 n +2 O

    Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.

    Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .

    Общая формула предельных мононитросоединений:

    а состав выражается общей формулой

    С n Н 2 n +1 NO 2 .

    Амины - соединения, которые рассматривают как производные аммиака (NН 3), в котором атомы водорода замещены на углеводородные радикалы.

    В зависимости от природы радикала амины могут быть алифатическими и ароматическими .

    В зависимости от числа замещенных на радикалы атомов водорода различают:

    Первичные амины с общей формулой: R-NН 2

    Вторичные - с общей формулой: R 1 -NН-R 2

    Третичные - с общей формулой:

    В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми.

    Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу -NН 2 . Состав предельных первичных аминов выражается формулой С n Н 2 n +3 N.

    Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом: аминогруппу -NН 2 , и карбоксил -СООН.

    Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой С n Н 2 n +1 NO 2 .

    Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др.

    Для названия органических соединений используют 2 номенклатуры — рациональную и систематическую (ИЮПАК) и тривиальные названия.

    Составление названий по номенклатуре ИЮПАК

    1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

    2) К корню добавляют суффикс, характеризующий степень насыщенности:

    Ан (предельный, нет кратных связей);
    -ен (при наличии двойной связи);
    -ин (при наличии тройной связи).

    Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:
    СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3
    бутен-1 бутен-2

    СН 2 =СН–СН=СН 2
    бутадиен-1,3

    Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

    Порядок составления названия следующий:

    1. Найти самую длинную цепь атомов С.

    2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

    3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.

    Номенклатура некоторых органических веществ (тривиальная и международная)